

Problem Set 4 (Due on Monday, 11/08)

Problem 1 Let G be a connected simple graph with $V = \{v_1, \dots, v_n\}$ and $d_i = \deg v_i$ for every $i \in [n]$. In terms of (d_1, \dots, d_n) , find the minimum number of edges that must be added to G to obtain a graph with an Eulerian circuit.

Problem 2 Let G be a simple graph on n vertices. Suppose that $\deg v + \deg w \geq n$ for each pair of distinct non-adjacent vertices v and w of G .

1. Prove that G is connected.
2. Prove that G has a Hamiltonian cycle.

Problem 3 For what values of n , can we decompose K_n into the union of edge-disjoint Hamiltonian cycles?

Problem 4 Let T be a tournament that is not strongly connected. Prove that the set of vertices of T can be partitioned into nonempty subsets A and B such that all edges between A and B go from A to B .

Problem 5 A plane rooted tree is a tree with a distinguished vertex, usually called **root**, with a total ordering on the children of each vertex. For each $n \in \mathbb{N}$, find the number of plane rooted trees with n edges.

Problem 6 Let k be a positive integer, and let T be a tree with precisely one vertex of degree j for every $j \in \llbracket 2, k \rrbracket$. Find the number of vertices of T if the rest of the vertices of T are leaves (i.e., have degree one).

Problem 7 We say that a tree T is **trivalent** if it satisfies that $\deg v \in \{1, 3\}$ for all $v \in V(T)$. Let T be a trivalent tree with ℓ leaves.

1. Find the number of three-degree vertices of T .
2. Prove that if $\ell > 3$, then there is a vertex of T that is adjacent to two leaves.

Problem 8 Let G be the graph obtained from the complete graph K_n by removing an edge. Find the number of spanning trees of G .